Vegetative incompatibility in the het-6 region of Neurospora crassa is mediated by two linked genes.

نویسندگان

  • M L Smith
  • O C Micali
  • S P Hubbard
  • N Mir-Rashed
  • D J Jacobson
  • N L Glass
چکیده

Non-self-recognition during asexual growth of Neurospora crassa involves restriction of heterokaryon formation via genetic differences at 11 het loci, including mating type. The het-6 locus maps to a 250-kbp region of LGIIL. We used restriction fragment length polymorphisms in progeny with crossovers in the het-6 region and a DNA transformation assay to identify two genes in a 25-kbp region that have vegetative incompatibility activity. The predicted product of one of these genes, which we designate het-6(OR), has three regions of amino acid sequence similarity to the predicted product of the het-e vegetative incompatibility gene in Podospora anserina and to the predicted product of tol, which mediates mating-type vegetative incompatibility in N. crassa. The predicted product of the alternative het-6 allele, HET-6(PA), shares only 68% amino acid identity with HET-6(OR). The second incompatibility gene, un-24(OR), encodes the large subunit of ribonucleotide reductase, which is essential for de novo synthesis of DNA. A region in the carboxyl-terminal portion of UN-24 is associated with incompatibility and is variable between un-24(OR) and the alternative allele un-24(PA). Linkage analysis indicates that the 25-kbp un-24-het-6 region is inherited as a block, suggesting that a nonallelic interaction may occur between un-24 and het-6 and possibly other loci within this region to mediate vegetative incompatibility in the het-6 region of N. crassa.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of vib-1, a locus involved in vegetative incompatibility mediated by het-c in Neurospora crassa.

A non-self-recognition system called vegetative incompatibility is ubiquitous in filamentous fungi and is genetically regulated by het loci. Different fungal individuals are unable to form viable heterokaryons if they differ in allelic specificity at a het locus. To identify components of vegetative incompatibility mediated by allelic differences at the het-c locus of Neurospora crassa, we isol...

متن کامل

Allelic specificity at the het-c heterokaryon incompatibility locus of Neurospora crassa is determined by a highly variable domain.

In filamentous fungi, the ability to form a productive heterokaryon with a genetically dissimilar individual is controlled by specific loci termed het loci. Only strains homozygous for all het loci can establish a heterokaryon. In Neurospora crassa, 11 loci, including the mating-type locus, regulate the capacity to form heterokaryons. An allele of the het-c locus (het-cOR) of N. crassa has been...

متن کامل

The homologue of het-c of Neurospora crassa lacks vegetative compatibility function in Fusarium proliferatum.

For two fungal strains to be vegetatively compatible and capable of forming a stable vegetative heterokaryon they must carry matching alleles at a series of loci variously termed het or vic genes. Cloned het/vic genes from Neurospora crassa and Podospora anserina have no obvious functional similarity and have various cellular functions. Our objective was to identify the homologue of the Neurosp...

متن کامل

A nonself recognition gene complex in Neurospora crassa.

Nonself recognition is exemplified in the fungal kingdom by the regulation of cell fusion events between genetically different individuals (heterokaryosis). The het-6 locus is one of approximately 10 loci that control heterokaryon incompatibility during vegetative growth of N. crassa. Previously, it was found that het-6-associated incompatibility in Oak Ridge (OR) strains involves two contiguou...

متن کامل

VIB-1 is required for expression of genes necessary for programmed cell death in Neurospora crassa.

Nonself recognition during somatic growth is an essential and ubiquitous phenomenon in both prokaryotic and eukaryotic species. In filamentous fungi, nonself recognition is also important during vegetative growth. Hyphal fusion between genetically dissimilar individuals results in rejection of heterokaryon formation and in programmed cell death of the fusion compartment. In filamentous fungi, s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 155 3  شماره 

صفحات  -

تاریخ انتشار 2000